
/GettyImages-764793193-e8f09cb6bc4843c0a7363db1d0a34c95.jpg)
In: Categorical Decomposition Techniques in Algebraic Topology (Isle of Skye, 2001), Volume 215 of Progress in Mathematics, pp. 324(4), 773–798 (2002)Ĭohen, R.L., Jones, J.D.S., Yan, J.: The loop homology algebra of spheres and projective spaces. arXiv:math.GT/9911159Ĭohen, R.L., Jones, J.D.S.: A homotopy theoretic realization of string topology. Cambridge University Press, Cambridge (2003)īurghelea, D., Fiedorowicz, Z.: Cyclic homology and algebraic \(K\)-theory of spaces.

London Mathematical Society Lecture Note Series, vol. 177, 319–343 (1973)īousfield, A.K., Kan, D.M.: A second quadrant homotopy spectral sequence. Springer, Berlin (1972)īousfield, A.K., Kan, D.M.: Pairings and products in the homotopy spectral sequence. 235, 185–213 (2018)īökstedt, M.: The topological Hochschild homology of \(\mathbb/p\) (unpublished)īousfield, A.K., Kan, D.M.: Homotopy Limits, Completions and Localizations. arXiv:math.AT/2012.03966īohmann, A.M., Gerhardt, T., Høgenhaven, A., Shipley, B., Ziegenhagen, S.: Computational tools for topological coHochschild homology. 5, 1223–1290 (2005)īayındır, H., Péroux, M.: Spanier–Whitehead duality for topological coHochschild homology (2020). American Mathematical Society, Providence (2010) (With forewords by Kenneth Brown and Stephen Chase and André Joyal)Īngeltveit, V., Rognes, J.: Hopf algebra structure on topological Hochschild homology. Aguiar, M., Mahajan, S.: Monoidal Functors, Species and Hopf Algebras, Volume 29 of CRM Monograph Series.
